A modified version of Moran's I
نویسندگان
چکیده
BACKGROUND Investigation of global clustering patterns across regions is very important in spatial data analysis. Moran's I is a widely used spatial statistic for detecting global spatial patterns such as an east-west trend or an unusually large cluster. Here, we intend to improve Moran's I for evaluating global clustering patterns by including the weight function in the variance, introducing a population density (PD) weight function in the statistics, and conducting Monte Carlo simulation for testing. We compare our modified Moran's I with Oden's I*pop for simulated data with homogeneous populations. The proposed method is applied to a census tract data set. METHODS We present a modified version of Moran's I which includes information about the strength of the neighboring association when estimating the variance for the statistic. We provide a power analysis on Moran's I, a modified version of Moran's I, and I*pop in a simulation study. Data were simulated under two common spatial correlation scenarios of local and global clustering. RESULTS For simulated data with a large cluster pattern, the modified Moran's I has the highest power (43.4%) compared to Moran's I (39.9%) and I*pop (12.4%) when the adjacent weight function is used with 5%, 10%, 15%, 20%, or 30% of the total population as the geographic range for the cluster.For two global clustering patterns, the modified Moran's I (power > 25.3%) performed better than both Moran's I (> 24.6%) and I*pop (> 7.9%) with the adjacent weight function. With the population density weight function, all methods performed equally well.In the real data example, all statistics indicate the existence of a global clustering pattern in a leukemia data set. The modified Moran's I has the lowest p-value (.0014) followed by Moran's I (.0156) and I*pop (.011). CONCLUSIONS Our power analysis and simulation study show that the modified Moran's I achieved higher power than Moran's I and I*pop for evaluating global and local clustering patterns on geographic data with homogeneous populations. The inclusion of the PD weight function which in turn redefines the neighbors seems to have a large impact on the power of detecting global clustering patterns. Our methods to improve the original version of Moran's I for homogeneous populations can also be extended to some alternative versions of Moran's I methods developed for heterogeneous populations.
منابع مشابه
Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers
BACKGROUND The ability to evaluate geographic heterogeneity of cancer incidence and mortality is important in cancer surveillance. Many statistical methods for evaluating global clustering and local cluster patterns are developed and have been examined by many simulation studies. However, the performance of these methods on two extreme cases (global clustering evaluation and local anomaly (outl...
متن کاملCombining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran's I analysis was used to supplement the traditional geostatistics. According to Moran's I analysis, four characteristics distances were obtained and used as the active lag distance to cal...
متن کاملMoran’s I quantifies spatio-temporal pattern formation in neural imaging data
Motivation Neural activities of the brain occur through the formation of spatio-temporal patterns. In recent years, macroscopic neural imaging techniques have produced a large body of data on these patterned activities, yet a numerical measure of spatio-temporal coherence has often been reduced to the global order parameter, which does not uncover the degree of spatial correlation. Here, we pro...
متن کاملA modified LLL algorithm for change of ordering of Grobner basis
In this paper, a modied version of LLL algorithm, which is a an algorithm with output-sensitivecomplexity, is presented to convert a given Grobner basis with respect to a specic order of a polynomialideal I in arbitrary dimensions to a Grobner basis of I with respect to another term order.Also a comparison with the FGLM conversion and Buchberger method is considered.
متن کاملAnalysis of Spatial Imbalance Associated with Rural Settlements in Iran
Spatial distributions of rural settlements in Iran represent an imbalanced nature. The major objective of this study is to investigate the spatial patterns of Iranian rural settlements using certain indicators and indices .It further tries to propose a model regarding the analysis of spatial imbalances. This study further supported by application of modifiable areal unit problem(MAUP) suitable ...
متن کامل